Magic Quadrant for Cloud Infrastructure as a Service, Worldwide

2016-08-10 - By 

Summary

The market for cloud IaaS has consolidated significantly around two leading service providers. The future of other service providers is increasingly uncertain and customers must carefully manage provider-related risks.

Market Definition/Description

Cloud computing is a style of computing in which scalable and elastic IT-enabled capabilities are delivered as a service using internet technologies. Cloud infrastructure as a service (IaaS) is a type of cloud computing service; it parallels the infrastructure and data center initiatives of IT. Cloud compute IaaS constitutes the largest segment of this market (the broader IaaS market also includes cloud storage and cloud printing). Only cloud compute IaaS is evaluated in this Magic Quadrant; it does not cover cloud storage providers, platform as a service (PaaS) providers, SaaS providers, cloud service brokerages (CSBs) or any other type of cloud service provider, nor does it cover the hardware and software vendors that may be used to build cloud infrastructure. Furthermore, this Magic Quadrant is not an evaluation of the broad, generalized cloud computing strategies of the companies profiled.

In the context of this Magic Quadrant, cloud compute IaaS (hereafter referred to simply as “cloud IaaS” or “IaaS”) is defined as a standardized, highly automated offering, where compute resources, complemented by storage and networking capabilities, are owned by a service provider and offered to the customer on demand. The resources are scalable and elastic in near real time, and metered by use. Self-service interfaces are exposed directly to the customer, including a web-based UI and an API. The resources may be single-tenant or multitenant, and hosted by the service provider or on-premises in the customer’s data center. Thus, this Magic Quadrant covers both public and private cloud IaaS offerings.

Cloud IaaS includes not just the resources themselves, but also the automated management of those resources, management tools delivered as services, and cloud software infrastructure services. The last category includes middleware and databases as a service, up to and including PaaS capabilities. However, it does not include full stand-alone PaaS capabilities, such as application PaaS (aPaaS) and integration PaaS (iPaaS).

We draw a distinction between cloud infrastructure as a service , and cloud infrastructure as an enabling technology ; we call the latter “cloud-enabled system infrastructure” (CESI). In cloud IaaS, the capabilities of a CESI are directly exposed to the customer through self-service. However, other services, including noncloud services, may be delivered on top of a CESI; these cloud-enabled services may include forms of managed hosting, data center outsourcing and other IT outsourcing services. In this Magic Quadrant, we evaluate only cloud IaaS offerings; we do not evaluate cloud-enabled services.

Gartner’s clients are mainly enterprises, midmarket businesses and technology companies of all sizes, and the evaluation focuses on typical client requirements. This Magic Quadrant covers all the common use cases for cloud IaaS, including development and testing, production environments (including those supporting mission-critical workloads) for both internal and customer-facing applications, batch computing (including high-performance computing [HPC]) and disaster recovery. It encompasses both single-application workloads and virtual data centers (VDCs) hosting many diverse workloads. It includes suitability for a wide range of application design patterns, including both cloud-native application architectures and enterprise application architectures.

Customers typically exhibit a bimodal IT sourcing pattern for cloud IaaS (see “Bimodal IT: How to Be Digitally Agile Without Making a Mess” and “Best Practices for Planning a Cloud Infrastructure-as-a-Service Strategy — Bimodal IT, Not Hybrid Infrastructure” ). Most cloud IaaS is bought for Mode 2 agile IT, emphasizing developer productivity and business agility, but an increasing amount of cloud IaaS is being bought for Mode 1 traditional IT, with an emphasis on cost reduction, safety and security. Infrastructure and operations (I&O) leaders typically lead the sourcing for Mode 1 cloud needs. By contrast, sourcing for Mode 2 offerings is typically driven by enterprise architects, application development leaders and digital business leaders. This Magic Quadrant considers both sourcing patterns and their associated customer behaviors and requirements.

This Magic Quadrant strongly emphasizes self-service and automation in a standardized environment. It focuses on the needs of customers whose primary need is self-service cloud IaaS, although this may be supplemented by a small amount of colocation or dedicated servers. In self-service cloud IaaS, the customer retains most of the responsibility for IT operations (even if the customer subsequently chooses to outsource that responsibility via third-party managed services).

Organizations that need significant customization or managed services for a single application, or that are seeking cloud IaaS as a supplement to a traditional hosting solution (“hybrid hosting”), should consult the Magic Quadrants for managed hosting instead ( “Magic Quadrant for Cloud-Enabled Managed Hosting, North America,” “Magic Quadrant for Managed Hybrid Cloud Hosting, Europe” and “Magic Quadrant for Cloud-Enabled Managed Hosting, Asia/Pacific” ). Organizations that want a fully custom-built solution, or managed services with an underlying CESI, should consult the Magic Quadrants for data center outsourcing and infrastructure utility services ( “Magic Quadrant for Data Center Outsourcing and Infrastructure Utility Services, North America,” “Magic Quadrant for Data Center Outsourcing and Infrastructure Utility Services, Europe” and “Magic Quadrant for Data Center Outsourcing and Infrastructure Utility Services, Asia/Pacific” ).

This Magic Quadrant evaluates all industrialized cloud IaaS solutions, whether public cloud (multitenant or mixed-tenancy), community cloud (multitenant but limited to a particular customer community), or private cloud (fully single-tenant, hosted by the provider or on-premises). It is not merely a Magic Quadrant for public cloud IaaS. To be considered industrialized, a service must be standardized across the customer base. Although most of the providers in this Magic Quadrant do offer custom private cloud IaaS, we have not considered these nonindustrialized offerings in our evaluations. Organizations that are looking for custom-built, custom-managed private clouds should use our Magic Quadrants for data center outsourcing and infrastructure utility services instead (see above).

Understanding the Vendor Profiles, Strengths and Cautions

Cloud IaaS providers that target enterprise and midmarket customers generally offer a high-quality service, with excellent availability, good performance, high security and good customer support. Exceptions will be noted in this Magic Quadrant’s evaluations of individual providers. Note that when we say “all providers,” we specifically mean “all the evaluated providers included in this Magic Quadrant,” not all cloud IaaS providers in general. Keep the following in mind when reading the vendor profiles:

  • All the providers have a public cloud IaaS offering. Many also have an industrialized private cloud offering, where every customer is on standardized infrastructure and cloud management tools, although this may or may not resemble the provider’s public cloud service in either architecture or quality. A single architecture and feature set and cross-cloud management, for both public and private cloud IaaS, make it easier for customers to combine and migrate across service models as their needs dictate, and enable the provider to use its engineering investments more effectively. Most of the providers also offer custom private clouds.

  • Most of the providers have offerings that can serve the needs of midmarket businesses and enterprises, as well as other companies that use technology at scale. A few of the providers primarily target individual developers, small businesses and startups, and lack the features needed by larger organizations, although that does not mean that their customer base is exclusively small businesses.

  • Most of the providers are oriented toward the needs of Mode 1 traditional IT, especially IT operations organizations, with an emphasis on control, governance and security; many such providers have a “rented virtualization” orientation, and are capable of running both new and legacy applications, but are unlikely to provide transformational benefits. A much smaller number of providers are oriented toward the needs of Mode 2 agile IT; these providers typically emphasize capabilities for new applications and a DevOps orientation, but are also capable of running legacy applications and being managed in a traditional fashion.

  • All the providers offer basic cloud IaaS — compute, storage and networking resources as a service. A few of the providers offer additional value-added capabilities as well, notably cloud software infrastructure services — typically middleware and databases as a service — up to and including PaaS capabilities. These services, along with IT operations management (ITOM) capabilities as a service (especially DevOps-related services) are a vital differentiator in the market, especially for Mode 2 agile IT buyers.

  • We consider an offering to be public cloud IaaS if the storage and network elements are shared; the compute can be multitenant, single-tenant or both. Private cloud IaaS uses single-tenant compute and storage, but unless the solution is on the customer’s premises, the network is usually still shared.

  • In general, monthly compute availability SLAs of 99.95% and higher are the norm, and they are typically higher than availability SLAs for managed hosting. Service credits for outages in a given month are typically capped at 100% of the monthly bill. This availability percentage is typically non-negotiable, as it is based on an engineering estimate of the underlying infrastructure reliability. Maintenance windows are normally excluded from the SLA.

  • Some providers have a compute availability SLA that requires the customer to use compute capabilities in at least two fault domains (sometimes known as “availability zones” or “availability sets”); an SLA violation requires both fault domains to fail. Providers with an SLA of this type are explicitly noted as having a multi-fault-domain SLA.

  • Very few of the providers have an SLA for compute or storage performance. However, most of the providers do not oversubscribe compute or RAM resources; providers that do not guarantee resource allocations are noted explicitly.

  • Many providers have additional SLAs covering network availability and performance, customer service responsiveness and other service aspects.

  • Infrastructure resources are not normally automatically replicated into multiple data centers, unless otherwise noted; customers are responsible for their own business continuity. Some providers offer optional disaster recovery solutions.

  • All providers offer, at minimum, per-hour metering of virtual machines (VMs), and some can offer shorter metering increments, which can be more cost-effective for short-term batch jobs. Providers charge on a per-VM basis, unless otherwise noted. Some providers offer either a shared resource pool (SRP) pricing model or are flexible about how they price the service. In the SRP model, customers contract for a certain amount of capacity (in terms of CPU and RAM), but can allocate that capacity to VMs in an arbitrary way, including being able to oversubscribe that capacity voluntarily; additional capacity can usually be purchased on demand by the hour.

  • Some of the providers are able to offer bare-metal physical servers on a dynamic basis. Due to the longer provisioning times involved for physical equipment (two hours is common), the minimum billing increment for such servers is usually daily, rather than hourly. Providers with a bare-metal option are noted as such.

  • All the providers offer an option for colocation, unless otherwise noted. Many customers have needs that require a small amount of supplemental colocation in conjunction with their cloud — most frequently for a large-scale database, but sometimes for specialized network equipment, software that cannot be licensed on virtualized servers, or legacy equipment. Colocation is specifically mentioned only when a service provider actively sells colocation as a stand-alone service; a significant number of midmarket customers plan to move into colocation and then gradually migrate into that provider’s IaaS offering. If a provider does not offer colocation itself but can meet such needs via a partner exchange, this is explicitly noted.

  • All the providers claim to have high security standards. The extent of the security controls provided to customers varies significantly, though. All the providers evaluated can offer solutions that will meet common regulatory compliance needs, unless otherwise noted. All the providers have SSAE 16 audits for their data centers (see Note 1). Some may have security-specific third-party assessments such as ISO 27001 or SOC 2 for their cloud IaaS offerings (see Note 2), both of which provide a relatively high level of assurance that the providers are adhering to generally accepted practices for the security of their systems, but do not address the extent of controls offered to customers. Security is a shared responsibility; customers need to correctly configure controls and may need to supply additional controls beyond what their provider offers.

  • Some providers offer a software marketplace where software vendors specially license and package their software to run on that provider’s cloud IaaS offering. Marketplace software can be automatically installed with a click, and can be billed through the provider. Some marketplaces also contain other third-party solutions and services.

  • All providers offer enterprise-class support with 24/7 customer service, via phone, email and chat, along with an account manager. Most providers include this with their offering. Some offer a lower level of support by default, but allow customers to pay extra for enterprise-class support.

  • All the providers will sign contracts with customers can invoice, and can consolidate bills from multiple accounts. While some may also offer online sign-up and credit card billing, they recognize that enterprise buyers prefer contracts and invoices. Some will sign “zero dollar” contracts that do not commit a customer to a certain volume.

  • Many of the providers have white-label or reseller programs, and some may be willing to license their software. We mention software licensing only when it is a significant portion of the provider’s business; other service providers, not enterprises, are usually the licensees. We do not mention channel programs; potential partners should simply assume that all these companies are open to discussing a relationship.

  • Most of the providers offer optional managed services on IaaS. However, not all offer the same type of managed services on IaaS as they do in their broader managed hosting or data center outsourcing services. Some may have managed service provider (MSP) or system integrator (SI) partners that provide managed and professional services.

  • All the evaluated providers offer a portal, documentation, technical support, customer support and contracts in English. Some can provide one or more of these in languages other than English. Most providers can conduct business in local languages, even if all aspects of service are English-only. Customers who need multilingual support will find it very challenging to source an offering.

  • All the providers are part of very large corporations or otherwise have a well-established business. However, many of the providers are undergoing significant re-evaluation of their cloud IaaS businesses. Existing and prospective customers should be aware that such providers may make significant changes to the strategy and direction of their cloud IaaS business, including replacing their current offering with a new platform, or exiting this business entirely in favor of partnering with a more successful provider.

In previous years, this Magic Quadrant has provided significant technical detail on the offerings. These detailed evaluations are now published in “Critical Capabilities for Public Cloud Infrastructure as a Service, Worldwide” instead.

The service provider descriptions are accurate as of the time of publication. Our technical evaluation of service features took place between January 2016 and April 2016.

Format of the Vendor Descriptions

When describing each provider, we first summarize the nature of the company and then provide information about its industrialized cloud IaaS offerings in the following format:

Offerings: A list of the industrialized cloud IaaS offerings (both public and private) that are directly offered by the provider. Also included is commentary on the ways in which these offerings deviate from the standard capabilities detailed in the Understanding the Vendor Profiles, Strengths and Cautions section above. We also list related capabilities of interest, such as object storage, content delivery network (CDN) and managed services, but this is not a comprehensive listing of the provider’s offerings.

Locations: Cloud IaaS data center locations by country, languages that the company does business in, and languages that technical support can be conducted in.

Recommended mode: We note whether the vendor’s offerings are likely to appeal to Mode 1 safety-and-efficiency-oriented IT, Mode 2 agility-oriented IT, or both. We also note whether the offerings are likely to be useful for organizations seeking IT transformation. This recommendation reflects the way that a provider goes to market, provides service and support, and designs its offerings. All such statements are specific to the provider’s cloud IaaS offering, not the provider as a whole.

Recommended uses: These are the circumstances under which we recommend the provider. These are not the only circumstances in which it may be a useful provider, but these are the use cases it is best used for. For a more detailed explanation of the use cases, see the Recommended Uses section below.

In the list of offerings, we state the basis of each provider’s virtualization technology and, if relevant, its cloud management platform (CMP). We also state what APIs it supports — the Amazon Web Services (AWS), OpenStack and vCloud APIs are the three that have broad adoption, but many providers also have their own unique API. Note that supporting one of the three common APIs does not provide assurance that a provider’s service is compatible with a specific tool that purports to support that API; the completeness and accuracy of API implementations vary considerably. Furthermore, the use of the same underlying CMP or API compatibility does not indicate that two services are interoperable. Specifically, OpenStack-based clouds differ significantly from one another, limiting portability; the marketing hype of “no vendor lock-in” is, practically speaking, untrue.

For many customers, the underlying hypervisor will matter, particularly for those that intend to run commercial software on IaaS. Many independent software vendors (ISVs) support only VMware virtualization, and those vendors that support Xen may support only Citrix XenServer, not open-source Xen (which is often customized by IaaS providers and is likely to be different from the current open-source version). Similarly, some ISVs may support the Kernel-based Virtual Machine (KVM) hypervisor in the form of Red Hat Enterprise Virtualization, whereas many IaaS providers use open-source KVM.

For a detailed technical description of public cloud IaaS offerings, along with a use-case-focused technical evaluation, see“Critical Capabilities for Public Cloud Infrastructure as a Service, Worldwide.”

We also provide a detailed list of evaluation criteria in “Evaluation Criteria for Cloud Infrastructure as a Service.” We have used those criteria to perform in-depth assessments of several providers: see “In-Depth Assessment of Amazon Web Services,” “In-Depth Assessment of Google Cloud Platform,” “In-Depth Assessment of SoftLayer, an IBM Company” and “In-Depth Assessment of Microsoft Azure IaaS.”

Recommended Uses

For each vendor, we provide recommendations for use. The most typical recommended uses are:

  • Cloud-native applications. These are applications specifically architected to run in a cloud IaaS environment, using cloud-native principles and design patterns.

  • E-business hosting. These are e-marketing sites, e-commerce sites, SaaS applications, and similar modern websites and web-based applications. They are usually internet-facing. They are designed to scale out and are resilient to infrastructure failure, but they might not use cloud transaction processing principles.

  • General business applications. These are the kinds of general-purpose workloads typically found in the internal data centers of most traditional businesses; the application users are usually located within the business. Many such workloads are small, and they are often not designed to scale out. They are usually architected with the assumption that the underlying infrastructure is reliable, but they are not necessarily mission-critical. Examples include intranet sites, collaboration applications such as Microsoft SharePoint and many business process applications.

  • Enterprise applications. These are general-purpose workloads that are mission-critical, and they may be complex, performance-sensitive or contain highly sensitive data; they are typical of a modest percentage of the workloads found in the internal data centers of most traditional businesses. They are usually not designed to scale out, and the workloads may demand large VM sizes. They are architected with the assumption that the underlying infrastructure is reliable and capable of high performance.

  • Development environments. These workloads are related to the development and testing of applications. They are assumed not to require high availability or high performance. However, they are likely to require governance for teams of users.

  • Batch computing. These workloads include high-performance computing (HPC), big data analytics and other workloads that require large amounts of capacity on demand. They do not require high availability, but may require high performance.

  • Internet of Things (IoT) applications. IoT applications typically combine the traits of cloud-native applications with the traits of big data applications. They typically require high availability, flexible and scalable capacity, interaction with distributed and mobile client devices, and strong security; many such applications also have significant regulatory compliance requirements.

For all the vendors, the recommended uses are specific to self-managed cloud IaaS. However, many of the providers also have managed services, as well as other cloud and noncloud services that may be used in conjunction with cloud IaaS. These include hybrid hosting (customers sometimes blend solutions, such as an entirely self-managed front-end web tier on public cloud IaaS, with managed hosting for the application servers and database), as well as hybrid IaaS/PaaS solutions. Even though we do not evaluate managed services, PaaS and the like in this Magic Quadrant, they are part of a vendor’s overall value proposition and we mention them in the context of providing more comprehensive solution recommendations.

Magic Quadrant

 
Figure 1. Magic Quadrant for Cloud Infrastructure as a Service, Worldwide
 
Gartner-CloudComputing-2016
 
Source: Gartner (August 2016)
 
See original article here.
 
 

Site Search

Search
Exact matches only
Search in title
Search in content
Search in comments
Search in excerpt
Filter by Custom Post Type
 

BlogFerret

Help-Desk
X
Sign Up

Enter your email and Password

Log In

Enter your Username or email and password

Reset Password

Enter your email to reset your password

X
<-- script type="text/javascript">jQuery('#qt_popup_close').on('click', ppppop);