Posted On:Facebook Archives - AppFerret

standard

Facebook’s Decline of 2017 is Coming to Light

2019-02-18 - By 

In 2017 we didn’t just ditch Facebook, we changed how we use it. It’s not just the Teen exodus that has been going on for years, adults started to spend less time on Facebook in 2017 in a big way.

According to Pivotal Research analysis of Nielsen data done by Business Insider, the amount of time adults spent on Facebook declined 4% year-over-year (YoY) in November 2017. This coincided with a pretty epic decline in referral traffic.

Due to Facebook’s weakness in video, a lot of time we spend online is going to YouTube directly dropping the time we spend on Facebook. The decline in use means for time on site and referral traffic, Google is snapping up a larger share of people’s time spent online, and we know YouTube is the main engine for that growth.

FACEBOOK REFERRAL TRAFFIC DROP

According to the Shareaholic Traffic Report, Facebook’s share of visits fell 8% in 2017, with Google, Pinterest and Instagram benefiting from the slide. So with Facebook’s drop in activity and traffic; the web is actually a slightly better place with YouTube, Pinterest, Instagram, WhatsApp and even the likes of LinkedIn benefitting (though LinkedIn’s algorithm has become very problematic).

Facebook’s share of visits dropped 12.7% between the second half of 2016 and the second half of 2017, per the report.

If you think about all the millions of users Facebook is supposed to have, that’s a huge amount of traffic and usage. They will say it’s by design and creating a better feed, but the times they are changing (just ask Walmart and its plummeting stock).

Search regained the lead from social in 2017 — driving 34.8% of site visits in 2017, compared with 25.6% from social. In China we know the future of social media is bots and automated “like” farms. Instagram and Twitter have been trying to tackle this problem to keep social media more “human”, as the way we share experiences has shifted to Instagram like stories.

Twitter is profitable again and Pinterest drives shares of real value; but Facebook is still abhorrently messy and akin to a social media misinformation dystopia. Microsoft has turned its LinkedIn feed into a Facebook like experience, and that’s not a good thing. Snapchat can’t seem to get a simple redesign right as users riot and petition and leave for Instagram. Don’t even get me started on the actual value of using Instagram.

Facebook user behavior changed, decreasing the time spent by 5%, which totals about 50 million minutes per day. The time they do spend is increasingly focused on video viewing, which is less likely to link out to other sites — but in Video Facebook has already lost the game.

Micro video on Facebook used to go inherently viral just made the user experience feel spammy. Politics and echo bubbles made Facebook feel like a very bad and thwarted online forum. There are better places to keep in touch with friends and family from around the globe. Whoever gets their news from Facebook, has to be an idiot, or above fifty years old, or in some impoverished country.

YouTube, Flipboard, and LinkedIn also gained slightly in share of visits in 2017. Reddit and Pinterest still do pretty well for referral traffic. For North Americans this is of course a mixed blessing, if Facebook had become like what WeChat is in China, we’d feel even worse about the state of the internet. Unfortunately for consumers however, Facebook’s legion of apps just aren’t that valuable or convenient to actually engage with businesses or services.

THE DEATH OF ORGANIC TRAFFIC

Chartbeat data showed Facebook traffic to publishers declined 6 percent since the beginning of January. With Facebook’s pivot away from the Newsfeed and publishers and corporate brands, this means rising costs of Ads as less users actually spend time and are reachable on Facebook’s platform. In some design sense, Facebook has failed the mobile internet.

Facebook failed to create a competitor to YouTube, did not anticipate anything that Netflix became, was not able to provide a VR experience to lead the next-gen; all epic failures for its future growth. If Amazon is an ecosystem of growing value, Facebook is an online dystopia of putting profits ahead of people and the user experience.

You could not pay me to spend more time on Facebook’s legion of apps. I would have deleted my account years ago if it wasn’t that I need it for work. But the exodus of how we used to use social media that Facebook mirrors as platform that was weaponized; is an era of the old internet that’s never coming back. The walled gardens of the Duopoly really did ruin the internet. It will never be the same again.

Original article here.


standard

State Of Machine Learning And AI, 2017

2017-10-01 - By 

AI is receiving major R&D investment from tech giants including Google, Baidu, Facebook and Microsoft.

These and other findings are from the McKinsey Global Institute Study, and discussion paper, Artificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in) published last month. McKinsey Global Institute published an article summarizing the findings titled   How Artificial Intelligence Can Deliver Real Value To Companies. McKinsey interviewed more than 3,000 senior executives on the use of AI technologies, their companies’ prospects for further deployment, and AI’s impact on markets, governments, and individuals.  McKinsey Analytics was also utilized in the development of this study and discussion paper.

Key takeaways from the study include the following:

  • Tech giants including Baidu and Google spent between $20B to $30B on AI in 2016, with 90% of this spent on R&D and deployment, and 10% on AI acquisitions. The current rate of AI investment is 3X the external investment growth since 2013. McKinsey found that 20% of AI-aware firms are early adopters, concentrated in the high-tech/telecom, automotive/assembly and financial services industries. The graphic below illustrates the trends the study team found during their analysis.
  • AI is turning into a race for patents and intellectual property (IP) among the world’s leading tech companies. McKinsey found that only a small percentage (up to 9%) of Venture Capital (VC), Private Equity (PE), and other external funding. Of all categories that have publically available data, M&A grew the fastest between 2013 And 2016 (85%).The report cites many examples of internal development including Amazon’s investments in robotics and speech recognition, and Salesforce on virtual agents and machine learning. BMW, Tesla, and Toyota lead auto manufacturers in their investments in robotics and machine learning for use in driverless cars. Toyota is planning to invest $1B in establishing a new research institute devoted to AI for robotics and driverless vehicles.
  • McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. Robotics and speech recognition are two of the most popular investment areas. Investors are most favoring machine learning startups due to quickness code-based start-ups have at scaling up to include new features fast. Software-based machine learning startups are preferred over their more cost-intensive machine-based robotics counterparts that often don’t have their software counterparts do. As a result of these factors and more, Corporate M&A is soaring in this area with the Compound Annual Growth Rate (CAGR) reaching approximately 80% from 20-13 to 2016. The following graphic illustrates the distribution of external investments by category from the study.
  • High tech, telecom, and financial services are the leading early adopters of machine learning and AI. These industries are known for their willingness to invest in new technologies to gain competitive and internal process efficiencies. Many startups have also had their start by concentrating on the digital challenges of this industries as well. The MGI Digitization Index is a GDP-weighted average of Europe and the United States. See Appendix B of the study for a full list of metrics and explanation of methodology. McKinsey also created an overall AI index shown in the first column below that compares key performance indicators (KPIs) across assets, usage, and labor where AI could make a contribution. The following is a heat map showing the relative level of AI adoption by industry and key area of asset, usage, and labor category.
  • McKinsey predicts High Tech, Communications, and Financial Services will be the leading industries to adopt AI in the next three years. The competition for patents and intellectual property (IP) in these three industries is accelerating. Devices, products and services available now and on the roadmaps of leading tech companies will over time reveal the level of innovative activity going on in their R&D labs today. In financial services, for example, there are clear benefits from improved accuracy and speed in AI-optimized fraud-detection systems, forecast to be a $3B market in 2020. The following graphic provides an overview of sectors or industries leading in AI addition today and who intend to grow their investments the most in the next three years.
  • Healthcare, financial services, and professional services are seeing the greatest increase in their profit margins as a result of AI adoption.McKinsey found that companies who benefit from senior management support for AI initiatives have invested in infrastructure to support its scale and have clear business goals achieve 3 to 15% percentage point higher profit margin. Of the over 3,000 business leaders who were interviewed as part of the survey, the majority expect margins to increase by up to 5% points in the next year.
  • Amazon has achieved impressive results from its $775 million acquisition of Kiva, a robotics company that automates picking and packing according to the McKinsey study. “Click to ship” cycle time, which ranged from 60 to 75 minutes with humans, fell to 15 minutes with Kiva, while inventory capacity increased by 50%. Operating costs fell an estimated 20%, giving a return of close to 40% on the original investment
  • Netflix has also achieved impressive results from the algorithm it uses to personalize recommendations to its 100 million subscribers worldwide. Netflix found that customers, on average, give up 90 seconds after searching for a movie. By improving search results, Netflix projects that they have avoided canceled subscriptions that would reduce its revenue by $1B annually.

 

Original article here.


standard

The tech industry is dominated by 5 big companies — here’s how each makes its money

2017-05-26 - By 

More and more, everything crucial about the present and future of consumer tech runs through at least one five companies: Alphabet, Apple, Facebook, Amazon, and Microsoft.

Smartphones, laptops, app distribution, voice assistants and AI, streaming music and video, cloud computing, online shopping, advertising — whatever it is, chances are it runs through the oligopoly in some way. The list of startups that have bought by the big five, meanwhile, is almost too long to count.

Each of the five make great products, to be clear, but it’s hard to deny that they control how tech money flows.

How each of those companies make their revenues, though, varies wildly. As this recent chart from Visual Capitalist shows, each of the big five hold their empires on the back of different industries. Google’s parent company Alphabet, for all the dabbling it does, is an online advertising company first and foremost. Facebook is, too. Apple is a hardware company through and through, while everything about Amazon flows from its e-commerce business.

Though it’s still the dominant player in PCs, Microsoft stands out as the only tech giant with diversified sources of revenue. It has Windows, of course, but with the PC market in decline, it’s also getting significant gains from Office, the Azure cloud business, Xbox, Ads, and various other businesses.

Original article here.


standard

All the Big Players Are Remaking Themselves Around AI

2017-01-02 - By 

FEI-FEI LI IS a big deal in the world of AI. As the director of the Artificial Intelligence and Vision labs at Stanford University, she oversaw the creation of ImageNet, a vast database of images designed to accelerate the development of AI that can “see.” And, well, it worked, helping to drive the creation of deep learning systems that can recognize objects, animals, people, and even entire scenes in photos—technology that has become commonplace on the world’s biggest photo-sharing sites. Now, Fei-Fei will help run a brand new AI group inside Google, a move that reflects just how aggressively the world’s biggest tech companies are remaking themselves around this breed of artificial intelligence.

Alongside a former Stanford researcher—Jia Li, who more recently ran research for the social networking service Snapchat—the China-born Fei-Fei will lead a team inside Google’s cloud computing operation, building online services that any coder or company can use to build their own AI. This new Cloud Machine Learning Group is the latest example of AI not only re-shaping the technology that Google uses, but also changing how the company organizes and operates its business.

Google is not alone in this rapid re-orientation. Amazon is building a similar group cloud computing group for AI. Facebook and Twitter have created internal groups akin to Google Brain, the team responsible for infusing the search giant’s own tech with AI. And in recent weeks, Microsoft reorganized much of its operation around its existing machine learning work, creating a new AI and research group under executive vice president Harry Shum, who began his career as a computer vision researcher.

Oren Etzioni, CEO of the not-for-profit Allen Institute for Artificial Intelligence, says that these changes are partly about marketing—efforts to ride the AI hype wave. Google, for example, is focusing public attention on Fei-Fei’s new group because that’s good for the company’s cloud computing business. But Etzioni says this is also part of very real shift inside these companies, with AI poised to play an increasingly large role in our future. “This isn’t just window dressing,” he says.

The New Cloud

Fei-Fei’s group is an effort to solidify Google’s position on a new front in the AI wars. The company is challenging rivals like Amazon, Microsoft, and IBM in building cloud computing services specifically designed for artificial intelligence work. This includes services not just for image recognition, but speech recognition, machine-driven translation, natural language understanding, and more.

Cloud computing doesn’t always get the same attention as consumer apps and phones, but it could come to dominate the balance sheet at these giant companies. Even Amazon and Google, known for their consumer-oriented services, believe that cloud computing could eventually become their primary source of revenue. And in the years to come, AI services will play right into the trend, providing tools that allow of a world of businesses to build machine learning services they couldn’t build on their own. Iddo Gino, CEO of RapidAPI, a company that helps businesses use such services, says they have already reached thousands of developers, with image recognition services leading the way.

When it announced Fei-Fei’s appointment last week, Google unveiled new versions of cloud services that offer image and speech recognition as well as machine-driven translation. And the company said it will soon offer a service that allows others to access to vast farms of GPU processors, the chips that are essential to running deep neural networks. This came just weeks after Amazon hired a notable Carnegie Mellon researcher to run its own cloud computing group for AI—and just a day after Microsoft formally unveiled new services for building “chatbots” and announced a deal to provide GPU services to OpenAI, the AI lab established by Tesla founder Elon Musk and Y Combinator president Sam Altman.

The New Microsoft

Even as they move to provide AI to others, these big internet players are looking to significantly accelerate the progress of artificial intelligence across their own organizations. In late September, Microsoft announced the formation of a new group under Shum called the Microsoft AI and Research Group. Shum will oversee more than 5,000 computer scientists and engineers focused on efforts to push AI into the company’s products, including the Bing search engine, the Cortana digital assistant, and Microsoft’s forays into robotics.

The company had already reorganized its research group to move quickly into new technologies into products. With AI, Shum says, the company aims to move even quicker. In recent months, Microsoft pushed its chatbot work out of research and into live products—though not quite successfully. Still, it’s the path from research to product the company hopes to accelerate in the years to come.

“With AI, we don’t really know what the customer expectation is,” Shum says. By moving research closer to the team that actually builds the products, the company believes it can develop a better understanding of how AI can do things customers truly want.

The New Brains

In similar fashion, Google, Facebook, and Twitter have already formed central AI teams designed to spread artificial intelligence throughout their companies. The Google Brain team began as a project inside the Google X lab under another former Stanford computer science professor, Andrew Ng, now chief scientist at Baidu. The team provides well-known services such as image recognition for Google Photos and speech recognition for Android. But it also works with potentially any group at Google, such as the company’s security teams, which are looking for ways to identify security bugs and malware through machine learning.

Facebook, meanwhile, runs its own AI research lab as well as a Brain-like team known as the Applied Machine Learning Group. Its mission is to push AI across the entire family of Facebook products, and according chief technology officer Mike Schroepfer, it’s already working: one in five Facebook engineers now make use of machine learning. Schroepfer calls the tools built by Facebook’s Applied ML group “a big flywheel that has changed everything” inside the company. “When they build a new model or build a new technique, it immediately gets used by thousands of people working on products that serve billions of people,” he says. Twitter has built a similar team, called Cortex, after acquiring several AI startups.

The New Education

The trouble for all of these companies is that finding that talent needed to drive all this AI work can be difficult. Given the deep neural networking has only recently entered the mainstream, only so many Fei-Fei Lis exist to go around. Everyday coders won’t do. Deep neural networking is a very different way of building computer services. Rather than coding software to behave a certain way, engineers coax results from vast amounts of data—more like a coach than a player.

As a result, these big companies are also working to retrain their employees in this new way of doing things. As it revealed last spring, Google is now running internal classes in the art of deep learning, and Facebook offers machine learning instruction to all engineers inside the company alongside a formal program that allows employees to become full-time AI researchers.

Yes, artificial intelligence is all the buzz in the tech industry right now, which can make it feel like a passing fad. But inside Google and Microsoft and Amazon, it’s certainly not. And these companies are intent on pushing it across the rest of the tech world too.

Original article here.

 


standard

IBM, Google, Facebook, Microsoft, Amazon form enormous AI partnership

2016-09-29 - By 

On Wednesday, the world learned of a new industry association called the Partnership on Artificial Intelligence, and it includes some of the biggest tech companies in the world. IBM, Google, Facebook, Microsoft, and Amazon have all signed on as marquis members, though the group hopes to expand even further over time. The goal is to create a body that can provide a platform for discussions among stakeholders and work out best practices for the artificial intelligence industry. Not directly mentioned, but easily seen on the horizon, is its place as the primary force lobbying for smarter legislation on AI and related future-tech issues.

Best practices can be boring or important, depending on the context, and in this case they are very, very important. Best practices could provide a framework for accurate safety testing, which will be important as researchers ask people to put more and more of their lives in the hands of AI and AI-driven robots. This sort of effort might also someday work toward a list of inherently dangerous and illegitimate actions or AI “thought” processes. One of its core goals is to produce thought leadership on the ethics of AI development.

So, this could end up being the bureaucracy that produces our earliest laws of robotics, if not the one that enforces them. The world “law” is usually used metaphorically in robotics. But with access to the lobbying power of companies like Google and Microsoft, we should expect the Partnership on AI to wade into discussions of real laws soon enough. For instance, the specifics of regulations governing self-driving car technology could still determine which would-be software standard will hit the market first. With the founding of this group, Google has put itself in a position to perhaps direct that regulation for its own benefit.

But, boy, is that ever not how they want you to see it. The group is putting in a really ostentatious level of effort to assure the world it’s not just a bunch of technology super-corps determining the future of mankind, like some sort of cyber-Bilderberg Group. The group’s website makes it clear that it will have “equal representation for corporate and non-corporate members on the board,” and that it “will share leadership with independent third-parties, including academics, user group advocates, and industry domain experts.”

Well, it’s one thing to say that, and quite another to live it. It remains to be seen if the group will actually comport itself as it will need to if it wants real support from the best minds in open source development. Below, the Elon Musk-associated non-profit research company OpenAI responds to the announcement with a rather passive-aggressive word of encouragement.

The effort to include non-profits and other non-corporate bodies makes perfect sense. There aren’t many areas in software engineering where you can claim to be the definitive authority if you don’t have the public on-board. Microsoft, in particular, is painfully aware of how hard it is to push a proprietary standard without the support of the open-source community. Not only will its own research be stronger and more diverse for incorporating the “crowd,” any recommendations it makes will carry more weight with government and far more weight with the public.

That’s why it’s so notable that some major players are absent from this early roll coll — most notably Apple and Intel. Apple haslong been known to be secretive about its AI research, even to the point of hurting its own competitiveness, while Intel has a history of treating AI as an unwelcome distraction. Neither approach is going to win the day, though there is an argument to be made that by remaining outside the group, Apple can still selfishly consume any insights it releases to the public.

Leaving such questions of business ethics aside, robot ethics remains a pressing problem. Self-driving cars illustrate exactly why, and the classic thought experiment involves a crowded freeway tunnel, with no room to swerve or time to brake. Seeing a crash ahead, your car must decide whether to swerve left and crash you into a pillar, or swerve right and save itself while forcing the car beside you right off the road itself. What is moral, in this situation? Would your answer change if the other car was carrying a family of five?

Right now these questions are purely academic. The formation of groups like this show they might not remain so for long.

Original article here.


Site Search

Search
Generic filters
Exact matches only
 

BlogFerret

Help-Desk
X
Sign Up

Enter your email and Password

Log In

Enter your Username or email and password

Reset Password

Enter your email to reset your password

X
<-- script type="text/javascript">jQuery('#qt_popup_close').on('click', ppppop);